阶乘算法(阶乘算法优化)
本篇文章给大家谈谈阶乘算法,阶乘阶乘以及阶乘算法优化对应的算法算法知识点,希望对各位有所帮助,优化不要忘了收藏本站喔。阶乘阶乘
阶乘是怎么计算的
n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,优化n!=(n-1)!×n。阶乘阶乘
亦即n!=1×2×3×...×n。算法算法阶乘亦可以递归方式定义:0!=1,优化n!=(n-1)!×n。阶乘阶乘
扩展资料
双阶乘用“m!算法算法!优化”表示。阶乘阶乘
当 m 是算法算法自然数时,表示不超过 m 且与 m 有相同奇偶性的优化所有正整数的乘积。如:
当 m 是负奇数时,表示绝对值小于它的绝对值的所有负奇数的绝对值积的倒数。
当 m 是负偶数时,m!!不存在。
任何大于等于1 的自然数n 阶乘表示方法:
资料来源:阶乘_百度百科
阶乘怎么算
问题一:阶乘的公式是什么 公式:n!=n*(n-1)!
阶乘的计算方法
阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。
例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×..×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×…×n,设得到的积是x,x就是n的阶乘。
阶乘的表示方法
在表达阶乘时,就使用“!”来表示。如x的阶乘,就表示为x!
他的原理就是反推,如,举例,求10的阶乘=10*9的阶乘(以后用!表示阶乘)那么9!=?,9!=9*8!,8!=8*7!,7!=7*6!,6!=6*5!,5!=5*4!,4!=4*3!,
3!=3*2!,2!=2*1!,1的阶乘是多少呢?是1 1!=1*1,数学家规定,0!=1,所以0!=1!然后在往前推算,公式为n!(n!为当前数所求的阶乘)=n(当前数)*(n-1)!(比他少一的一个数N-1的阶乘把公式列出来像后推,只有1的!为1,所以要从1开始,要知道3!要知道2!就要知道1!但必须从1!开始推算所以要像后推,如果遍程序算法可以此公式用一个函数解决,并且嵌套调用次函数,,)把数带入公式为, 1!=1*1 2!=2*1(1!) 3!=3*2(2!) 4=4*6(3!),如果要是编程,怎么解决公式问题呢
首先定义算法
算法,1,定义函数,求阶乘,定义函数fun,参数值n,(#include
long fun(int n ) long 为长整型,因20!就很大了超过了兆亿
(数学家定义数学家定义,0!=1,所以0!=1!,0与1的阶乘没有实际意义)
2,函数体判断,如果这个数大于1,则执行if(n1)(往回退算,这个数是10求它!,要从2的阶乘值开始,所以执行公式的次数定义为9,特别需要注意的是此处,当前第一次写入代码执行,已经算一次)
求这个数的n阶乘(公式为,n!=n*(n-1)!,并且反回一个值,
return (n*(fun(n-1));(这个公式为,首先这个公式求的是10的阶乘,但是求10的阶乘就需要,9的阶乘,9的阶乘我们不知道,所以就把10减1,也就是n-1做为一个新的阶乘,从新调用fun函数,求它的阶乘然后在把这个值返回到 fun(n-1),然后执行n*它返回的值,其实这个公式就是调用fun函数的结果,函数值为return 返回的值,(n-1)为参数依次类推,...一值嵌套调用fun函数,
到把n-1的值=1,
注意:此时已经运行9次fun()函数算第一次运行,,调用几次fun函数呢?8次函数,所以,n-1执行了9次,n-1=1 ,n=2已经调用就可以求2乘阶值
问题二:阶乘怎么算啊 【阶乘的概念】
阶乘(factorial)是基斯顿・卡曼(Christian Kramp, 1760 �C 1826)于1808年发明的运算符号。
阶乘,也是数学里的一种术语。
[编辑本段]【阶乘的计算方法】
阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。
例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,�4就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。
[编辑本段]【阶乘的表示方法】
在表达阶乘时,就使用“!”来表示。如x的阶乘,就表示为x!
如:n!=n×(n-1)×(n-2)×(n-3)×...×1
阶乘的另一种表示方法:(2n-1)!!
当n=2时,3!!=3×1=3
当n=3时,5!!=5×3×1=15
当n=4时,7!!=7×5×3×1=105
...(以此类推)
[编辑本段]【20以内的数的阶乘】
以下列出0至20的阶乘:
0!=1,
1!=1,
2!=2,
3!=6,
4!=24,
5!=120,
6!=720,
7!=5040,
8!=40320
9!=362880
10!=3628800
11!=39916800
12!=479001600
13!=6227020800
14!=87178291200
15!=1307674368000
16!=20922789888000
17!=355687428096000
18!=6402373705728000
19!=121645100408832000
20!=2432902008176640000
另外,数学家定义,0!=1,所以0!=1!
[编辑本段]【阶乘的定义范围】
通常我们所说的阶乘是定义在自然数范围里的,小数没有阶乘,像0.5!,0.65!,0.777!都是错误的。但是,有时候我们会将Gamma函数定义为非整数的阶乘,因为当x是正整数n的时候,Gamma函数的值是n-1的阶乘。
¤伽玛函数(Gamma Function)
Γ(x)=∫e^(-t)*t^(x-1)dt (积分下限是零上限是+∞)(x0,-1,-2,-3,……)
运用积分的知识,我们可以证明Γ(x)=(x-1) * Γ(x-1)
所以,当x是整数n时,Γ(n) = (n-1)(n-2)……=(n-1)!
这样Gamma 函数实际上就把阶乘的延拓。
¤欧拉等式
x!=)=∫-(ln(x))^ndx (积分下限是零上限是+1)(x0)
¤[计算机科学]
用Ruby求365的阶乘。
def AskFactorial(num) factorial=1;
1.step(num,1){ |i| factorial*=i}
return factorial end factorial=AskFactorial(365)
puts factorial
¤【阶乘有关公式】
n!~sqrt(2*pi*n)(n/e)^n
该公式常用来计算与阶乘有关的各种极限。...
问题三:2的阶乘的阶乘是什么啊?就是2!!代表的什么意思?怎样计算?谢谢 我认为从里往外算:
第一层:2*1=2
第二层2*1=2
问题四:阶乘的计算方法 正整数阶乘指从 1 乘以 2 乘以 3 乘以 4 一直乘到所要求的数。例如所要求的数是 4,则阶乘式是 1×2×3×4,得到的积是 24,24 就是 4 的阶乘。 例如所要求的数是 6,则阶乘式是 1×2×3×……×6,得到的积是 720,720 就是 6 的阶乘。例如所要求的数是 n,则阶乘式是 1×2×3×……×n,设得到的积是 x,x 就是 n 的阶乘 。
问题五:阶乘的公式是什么 公式:n!=n*(n-1)!
阶乘的计算方法
阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。
例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×..×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×…×n,设得到的积是x,x就是n的阶乘。
阶乘的表示方法
在表达阶乘时,就使用“!”来表示。如x的阶乘,就表示为x!
他的原理就是反推,如,举例,求10的阶乘=10*9的阶乘(以后用!表示阶乘)那么9!=?,9!=9*8!,8!=8*7!,7!=7*6!,6!=6*5!,5!=5*4!,4!=4*3!,
3!=3*2!,2!=2*1!,1的阶乘是多少呢?是1 1!=1*1,数学家规定,0!=1,所以0!=1!然后在往前推算,公式为n!(n!为当前数所求的阶乘)=n(当前数)*(n-1)!(比他少一的一个数N-1的阶乘把公式列出来像后推,只有1的!为1,所以要从1开始,要知道3!要知道2!就要知道1!但必须从1!开始推算所以要像后推,如果遍程序算法可以此公式用一个函数解决,并且嵌套调用次函数,,)把数带入公式为, 1!=1*1 2!=2*1(1!) 3!=3*2(2!) 4=4*6(3!),如果要是编程,怎么解决公式问题呢
首先定义算法
算法,1,定义函数,求阶乘,定义函数fun,参数值n,(#include
long fun(int n ) long 为长整型,因20!就很大了超过了兆亿
(数学家定义数学家定义,0!=1,所以0!=1!,0与1的阶乘没有实际意义)
2,函数体判断,如果这个数大于1,则执行if(n1)(往回退算,这个数是10求它!,要从2的阶乘值开始,所以执行公式的次数定义为9,特别需要注意的是此处,当前第一次写入代码执行,已经算一次)
求这个数的n阶乘(公式为,n!=n*(n-1)!,并且反回一个值,
return (n*(fun(n-1));(这个公式为,首先这个公式求的是10的阶乘,但是求10的阶乘就需要,9的阶乘,9的阶乘我们不知道,所以就把10减1,也就是n-1做为一个新的阶乘,从新调用fun函数,求它的阶乘然后在把这个值返回到 fun(n-1),然后执行n*它返回的值,其实这个公式就是调用fun函数的结果,函数值为return 返回的值,(n-1)为参数依次类推,...一值嵌套调用fun函数,
到把n-1的值=1,
注意:此时已经运行9次fun()函数算第一次运行,,调用几次fun函数呢?8次函数,所以,n-1执行了9次,n-1=1 ,n=2已经调用就可以求2乘阶值
问题六:阶乘怎么算啊 【阶乘的概念】
阶乘(factorial)是基斯顿・卡曼(Christian Kramp, 1760 �C 1826)于1808年发明的运算符号。
阶乘,也是数学里的一种术语。
[编辑本段]【阶乘的计算方法】
阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。
例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,�4就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。
[编辑本段]【阶乘的表示方法】
在表达阶乘时,就使用“!”来表示。如x的阶乘,就表示为x!
如:n!=n×(n-1)×(n-2)×(n-3)×...×1
阶乘的另一种表示方法:(2n-1)!!
当n=2时,3!!=3×1=3
当n=3时,5!!=5×3×1=15
当n=4时,7!!=7×5×3×1=105
...(以此类推)
[编辑本段]【20以内的数的阶乘】
以下列出0至20的阶乘:
0!=1,
1!=1,
2!=2,
3!=6,
4!=24,
5!=120,
6!=720,
7!=5040,
8!=40320
9!=362880
10!=3628800
11!=39916800
12!=479001600
13!=6227020800
14!=87178291200
15!=1307674368000
16!=20922789888000
17!=355687428096000
18!=6402373705728000
19!=121645100408832000
20!=2432902008176640000
另外,数学家定义,0!=1,所以0!=1!
[编辑本段]【阶乘的定义范围】
通常我们所说的阶乘是定义在自然数范围里的,小数没有阶乘,像0.5!,0.65!,0.777!都是错误的。但是,有时候我们会将Gamma函数定义为非整数的阶乘,因为当x是正整数n的时候,Gamma函数的值是n-1的阶乘。
¤伽玛函数(Gamma Function)
Γ(x)=∫e^(-t)*t^(x-1)dt (积分下限是零上限是+∞)(x0,-1,-2,-3,……)
运用积分的知识,我们可以证明Γ(x)=(x-1) * Γ(x-1)
所以,当x是整数n时,Γ(n) = (n-1)(n-2)……=(n-1)!
这样Gamma 函数实际上就把阶乘的延拓。
¤欧拉等式
x!=)=∫-(ln(x))^ndx (积分下限是零上限是+1)(x0)
¤[计算机科学]
用Ruby求365的阶乘。
def AskFactorial(num) factorial=1;
1.step(num,1){ |i| factorial*=i}
return factorial end factorial=AskFactorial(365)
puts factorial
¤【阶乘有关公式】
n!~sqrt(2*pi*n)(n/e)^n
该公式常用来计算与阶乘有关的各种极限。...
问题七:阶乘的计算方法 正整数阶乘指从 1 乘以 2 乘以 3 乘以 4 一直乘到所要求的数。例如所要求的数是 4,则阶乘式是 1×2×3×4,得到的积是 24,24 就是 4 的阶乘。 例如所要求的数是 6,则阶乘式是 1×2×3×……×6,得到的积是 720,720 就是 6 的阶乘。例如所要求的数是 n,则阶乘式是 1×2×3×……×n,设得到的积是 x,x 就是 n 的阶乘 。
问题八:怎样计算“阶乘” 阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。 所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。
问题九:C语言怎么求n阶乘的和 main()
{ int s=0,a=1,i;
for(i=1;i
阶乘怎么算?
5的阶乘就是5×4×3×2×1。
阶乘(一个数n的阶乘写成n!)的算法:
n!=1×2×3×...×(n-1)×n。
定义:0!=1,n!=(n-1)!×n
扩展资料:
真正严谨的阶乘定义应该为:对于数n,所有绝对值小于或等于n的同余数之积。称之为n的阶乘,即n!
对于复数应该是指所有模n小于或等于│n│的同余数之积。。。对于任意实数n的规范表达式为:
正数 n=m+x,m为其正数部,x为其小数部
负数n=-m-x,-m为其正数部,-x为其小数部
对于纯复数
n=(m+x)i,或n=-(m+x)i
阶乘计算公式
阶乘的主要公式:
1、任何大于1的自然数n阶乘表示方法:n!=1×2×3×……×n 或 n!=n×(n-1)!
2、n的双阶乘:当n为奇数时表示不大于n的所有奇数的乘积 。
如:7!=1×3×5×7
3、当n为偶数时表示不大于n的所有偶数的乘积(除0外)
如:8!=2×4×6×8
4、小于0的整数-n 的阶乘表示:
(-n)!= 1 / (n+1)!
5、0的阶乘:0!=0
6、组合数公式
扩展资料:
阶乘(factorial)是基斯顿·卡曼(Christian Kramp, 1760 – 1826)于1808年发明的运算符号。阶乘,也是数学里的一种术语。阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。
另外,数学家定义,0!=1,所以0!=1!通常我们所说的阶乘是定义在自然数范围里的,小数没有阶乘,像0.5!,0.65!,0.777!都是错误的。
但是,有时候我们会将Gamma函数定义为非整数的阶乘,因为当x是正整数n的时候,Gamma函数的值是n-1的阶乘。
参考资料:百度百科 - 阶乘
阶乘算法的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于阶乘算法优化、阶乘算法的信息别忘了在本站进行查找喔。
如果您对本站有任何建议,欢迎您提出来!本站部分信息来源于网络,如果侵犯了您权益,请联系我们删除!
上一篇:超异能冒险(超异能冒险简介)
微信客服